REU: Rational Curves over Finite Fields

نویسنده

  • Johan de Jong
چکیده

Our main object of study is X ⊂ P5F2 , where X is the degree 5 Fermat hypersurface, which we are looking at in P over F2. X is the zero locus {X 0 +X 1 + ...+X 5 = 0}. The question is, “what kind of rational curves lie on X?” Since F2 only has one invertible element, P(F2) = F 2 \ 0, which suggests that the Fermat quintic has the same zero locus as the linear hypersurface X0 + X1 + ... + X5 = 0; however, we are interested in field extensions as well, so X is a “thing,” not just the space of solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the maximum number of rational points on singular curves over finite fields

We give a construction of singular curves with many rational points over finite fields. This construction enables us to prove some results on the maximum number of rational points on an absolutely irreducible projective algebraic curve defined over Fq of geometric genus g and arithmetic genus π.

متن کامل

The family of indefinite binary quadratic forms and elliptic curves over finite fields

In this paper, we consider some properties of the family of indefinite binary quadratic forms and elliptic curves. In the first section, we give some preliminaries from binary quadratic forms and elliptic curves. In the second section, we define a special family of indefinite forms Fi and then we obtain some properties of these forms. In the third section, we consider the number of rational poi...

متن کامل

On Curves over Finite Fields with Many Rational Points

We study arithmetical and geometrical properties of maximal curves, that is, curves defined over the finite field Fq2 whose number of Fq2 -rational points reachs the Hasse-Weil upper bound. Under a hypothesis on non-gaps at rational points we prove that maximal curves are Fq2 -isomorphic to y q + y = x for some m ∈ Z.

متن کامل

Apprentice Linear Algebra , 3 rd day , 07 / 06 / 05 REU 2005 Instructor : László Babai

Regarding the entire discussion of vector spaces and their properties, we may replace R by any field F , and define vector space “over F” for which F is the domain of scalars. Note that it only makes sense to consider linear maps between vector spaces over the same field. We are already familiar with the field of real numbers R, but also with rational numbers Q, complex numbers C, and the finit...

متن کامل

On the number of rational points on curves over finite fields with many automorphisms

Using Weil descent, we give bounds for the number of rational points on two families of curves over finite fields with a large abelian group of automorphisms: Artin-Schreier curves of the form y−y = f(x) with f ∈ Fqr [x], on which the additive group Fq acts, and Kummer curves of the form y q−1 e = f(x), which have an action of the multiplicative group Fq . In both cases we can remove a √ q fact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012